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ABSTRACT 

A theoretical analysis of  the response pf a thin cylindrical she.IL&to a-LEdjng,- 
i s  ?veri, and equations defining the b i n t z s z o f  a cylinder are derived. The 
governing equGtions ot motion ‘are taken to be the Reissner shallow shell equations. 
The solution gives the spectral density function of both the radial displacement and 
stress function i n  terms of the normal modes of the cylinder and the spectral density 
function of the external pressure field. The final equations involve an external 
pressure-structural mode coupling term similar to the joint acceptance as defined by 
Powell , which then serves as the basis for defining the joint acceptance for cylinders. 
Using these equations, numerical results are obtained for the joint acceptance for a 
cylinder i n  a diffuse sound field. 
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INTRODUCTION 

There i s  currently a growing interest i n  problems involving random vibration of thin cylindrical 
shells. Examples of such problems are the response of a launching vehicle structure or aircraft 
fuselage to random acoustic or aerodynamic loading, the response of submarine hulls to hydro- 
dynamic turbulence etc. 

A recent treatment of this problem was given by Cottis and Jasonides', who considered the 
correlation function of the radial displacement o f  a thin cylinder due to a purely random 
pressure field and to boundary layer pressure fluctuations. Most other work i n  the area o f  
random vibration of structures has been restricted to strings * f3, beams 4,or plates 4,516. A 
general analysis o f  these problems has been given i n  a formal manner by Powell 7,wh0 intro- 
duced the notion of joint acceptance. 

The theoretical analysis which follows utilizes the Reissner shallow-shell equations 8, as applied 
to cylindrical shells by Cottis and Jasonides, except that no hysteretic damping term was 
included. The analysis departs from that of Cottis and Jasonides i n  that the two simultaneous 
differential equations of  motion for the cylinder radial displacement and stress function are 
written as a single matrix equation, instead of  obtaining a single differential equation for the 
radial displacement by differentiation and elimination. Also , the analysis was concerned with 
finding the spectral density function, rather than the correlation function, of the desired 
quanti ties. 

, 

The solution gives the spectral density functions of both the cylinder radial displacement and 
stress function i n  terms of  the normal modes of  the cylinder and the spectral density function of  
the external pressure field. The final equations involve an external pressure - structural mode 
coupling term similar to the joint acceptance as defined by Powell. The joint acceptance for 
the cylinder i s  then defined i n  terms of this quantity. 

Using the equations derived i n  the text, numerical results were obtained for the joint accept- 
ance of a simply supported cylinder i n  a diffuse sound f ield (i .e. , a f ield i n  which sound waves 
impinge on the cylinder from al l  directions with random phase and with intensity independent 
of direction). The calculations ut i l ized the formula for the surface pressure spectral density 
function for the cylinder i n  a diffuse field which was obtained by the author i n  a previous 
paper9, and the results, for the first few cylinder mode shapes, are plotted i n  Figures (2) and 
(3). Also plotted were asymptotic expansions for the joint acceptance which were derived 
assuming large longitudinal mode number and large frequency. 

THEORY 

2 
Consider a thin cylindrical shell of radius a and length 1. Letting a =a be the coordinate 
along the length of  the cylinder and p the angular coordinate around the cylinder, the Reissner 
equations for the vibrating cylindrical shell can be written i n  the form 

1 



where w (a , p, t) i s  the lateral displacement of  the middle surface, + (a, p, t) i s  the stress 
function, p (a, P I  t) i s  the loading on the surface of  the cylinder, and the dot refers to 
differentiation with respect to t. Equations (1) can be written i n  matrix form as follows: 

a where J =  ( l  O), w = p  P = ( )  
0 0  

and the differential operator L i s  given by 

L =  

D 
4 

a 

1 
3 

a 

- 

- 

4 V 
I 

a2 - -  
2' 

aa 

1 a2 - -  
3 

1 4  
4 

-V 
Eha 

I f  p (a, p ,  t) i s  of the form 

then, assuming a solution of (2) o f  the form 

equation (2) becomes 

( A  J - L) U = f, (3 ) 

where f =($and X = ow - iwd. Letting f = 0 we obtain the homogeneous form of (3): 

( X J - L ) U = O .  (4) 

Assuming that the cylinder i s  simply supported at the ends, i .e., at z = o and z =e ,  solutions 
X mnr Umn of (4) can be obtained i n  the form 

Umn = 'mn Om" (a,  P),  



(a, P ) =  &sin k a e i mp I 
n 'mn 

w h e r e n = l , 2 ,  ...... , m = O , f  1 , i  2, ......, 

nn a 
mn 

mn 

x -  
mn 

a a 

2 2 2  
n (m + k  1 + 

Ehk4 
n 

(m 2 + k )  2 2 1  
n 

and a and b are solutions of  
mn mn 

k2 
b = O  

a amn+ 3 a mn 

n 

I 

2 1 2 
kL 
n 
3 a mn + -  4 (m + k 2 )  n 

a Eha 
b mn = 0 . - 

the presence of  longitudinal stiffeners and/or ring stiffners can be accounted for by addition- 
al  restrictions on m and n.  Here the functions qmn (a, P) are chosen so that they are ortho- 
normal i .e. / so that the inner product 

1 for m = m', n = n l  

0 otherwise 

where the (*) denotes complex conjugate. Also amn and bmn are chosen so that 

a2 + b 2  = 1 ,  
mn mn 

The general solution of (3) i n  terms of normal modes can now be obtained as follows: Assume a 
solution of the form 

U = z d  U = x d  c 
mn mn 'mn m/ n mn mn m, n 
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when the dmnlS are undetermined coefficients. Then 

( X J - L ) U = C  d ( X J - L ) U  = 
mn mn 

m, n 

L d  ( X J - X  J + X  J - L ) U  = m,n mn mn mn mn 

since 

(A J - L ) U  = O .  
mn mn 

, Now, assuming that the 9 Is form a complete ortho-normal sequence, we can set 
mn 

so that 

(Qmn’ 9) 
J U  . 

a mn 
f = C  

m,n mn 

Equating (7) and (9) we obtain 

(Qmnf 4) 
d =  
mn a ( A  - Xmn) * 

mn 

(9)  

Setting U (a, P)  = , and substituting (10) into (6) gives 

mn 
b 

where - i s  obtained from ( 5 ) .  
amn 

4 



For purposes of random analysis it i s  necessary to bbtain the Green's function for equation 
(2), i.e., the solution G (a, p, a', p', t) of 

a J g + d J G + L G  = (- (a - a ' ,  p - p') 6 (t)) 
0 

A 
where S refers to the Dirac delta-function. Letting G be the Fourier transform of G w i t h  
respect to the variable o, we obtain, by taking the Fourier transform of both sides of (12), 

A 1 (XJ - L) G = @ 
-a'; 

where X = Q W  2 - iwd. Letting G = k) , 8 =p) , we have, ut i l iz ing the previous 
GQ GQ 

solution given by ( l l ) ,  

2 h Ehok 
where 

Taking the inverse Fourier transform of (14) yields the desired Green's function. The solution 
of (1) i s  then written in terms of Green's function in the form 

w t) = G (a, f3, a', p', t - t ')  p (a', p', t ') d a '  d p '  d t' , 
-00 0 

(15) 

qJ ( . , P I  t) = G (a, p, a', p', t - t ')  p (a', p', t ' )  da' d p '  d t '  . 
-a, 0 

Equations (15) can be used to obtain the cross spectral densities for the functions w and 9. 
Robson'O exhibits a method for computing the cross spectral density of  the response i n  terms of 
the cross spectral density of the forcing function and the associated Green's function, which, 

5 



when applied to the present problem, gives the following formulas for the cross spectral 
densities Sw (a, P, a', p', w) and S (a, P I  a', p', w) of  w and 9: cp 

s (a, p, a', P' ,  4 = 
W 

where S (a 

(16) we obtain finally 

Pl , a2, P2, w) i s  the cross spectral density of  p (a, p, t). Substituting (14) into 
P 1 '  

CIrl 
m,n m',n' 

6 



i 
where 2 
divided by the pressure power spectrum, i s  defined to be the cross-joint acceptance squared 

m'n' 
for the cylinder. LettingJ 

mn 
setting a = - and letting 8 = (3, 

(w) = X - X mn mn . The quantity inside the square brackets in (17) and (18), when 

(w) be the quantity in square brackets i n  (17) and (18), we have, 
Z 

a 

where S(8,  z, e ' ,  z', w) = Sp (a, P I  a', p', 0). Substituting for qmn and qmInl , (19) 
becomes 

Cylinder i n  Diffuse Field 

We assume now that the cylindrical shell in question i s  a section o f  an infinitely long cylinder 
which i s  subject to a three-dimensional diffuse sound field, i .e. , one i n  which plane waves 
impinge on the cylinder from al l  directions wi th  random phase, and with intensity independent 
o f  direction. The surface pressure spectral density function for this case has been obtained by 
the writer9 i n  the form 

-R 

T 

00 1 
Jo(2kacosysin-6)+ c E h (kacos y) cosv b 

2 v = o  v v 

2 where 
Substituting (21) into (ZO), and setting m = m '  and n = n '  we obtain, after interchanging orders 
o f  integration , 

S = 8 - 8 '  , < = z - z' , and P (w) i s  the pressure power spectrum. 

7 



1 f3 e,,\ (kacosy) cosv6 z sin nr Z' eim6 dzdz'dede' d y .  v = o  e 
Assuming that the infinite series converges uniformly, this can be written 

H 

1 im6 J (2 k a cos ysin-66)e de de' 
mn 0 2 

2 

OD 

v = o  

nn 
cos (k csin y) sin 7 z sin z ' d z d z ' +  cvhv (kacos y). 

i m6 nn 
0 J 2 n f H ~ ~ ~ ~ 6  e dede' 6 6" cos (kc sin y) sin z sin z '  dzdz' 

Lett i ng 

1 im6 J (2kacos ysin-6) e dede' , 
0 2 

= J"" I'" 
m 

0 0 

nn nn 
n f f cos ( k c  sin y) sin 5 z sin z '  dzdz' , 

0 0  

i m6 
cosv6e dede' , v m  

= 0 p" 6'" 
(23) can be written 

1 - 
p2(w) cos y [ 1 " )  + 2 e h (kacosy ) 

m V = O  V V  n 
Jmn (w) = 
mn 3- -1 - 

2 

I 8 



The three integrals I (') and I (3 ) can each be evaluated most readily using a coordinate m ' n  vm 
transformation, the nature of which i s  best illustrated by an example. Choosing 

the integral to be evaluated, we make the following successive coordinate transformations: 

(n> 0) as 
n 

e 

11 1 
I -- (zl - z), u '  =r(z'+ z), -& 

'TI 

w z  a 

and 

Then with respect to thp u, v coordinates, I (2) can be written 
n 

(2) = 4 &OS ( N  V) [cos nv - (- 1)" cos nu du dv, I 
n I 4 H  

where I( = sin y. Integrating f i rs t  with respect to u, (25) can be written 
H 

2 

n 2 
1') = e JH COSN v I" - " 1 ~ 0 s  nv - (- 1)" cosnu 

4 H  -H -b- 1.1) 

1 1 
n 

$ [ I. - v) cos i v  cos nv+-cos K V  sin nv dv. 
1 

The second integral i n  (26) can be evaluated by means of  tables to yield finally 

9 



\ 

By means of simi lar transformations, 1 " )  and are evaluated to yield 
m vm 

2 
1 " )  = 8 1 r ( - l ) ~  J (2 kacosycosg)cos2mgdg 
m 0 

where S i s  the Kronecker delta. Making use of  the identity 1 1  
Mn 

equation (28) can be written 

= 41r2 J2 (k a cos y) . 
m m 
I 

Substituting (27), (29), and (31) into (24) gives 

1 - ( - l ) n C O S * T I  2 2 2 2  2 
cos y [4lr Jm (k a cosy) + Jmn (.) - 2 n  (') l2 

f 01 - -lr 2 2 2  
( a  - n )  

mn 

2 

1 2 r  2 E h (kacosy) dy 
m m  

..I 

which becomes, after substituting for K = g s i n  y and setting p =e/a, 
lr 

2 y cos y 1 - ( - l )ncos(pkasiny) ,  

2 

(0) = 8 n  p n  

Jmn -H [(pkasin y) 2 - n 2 T 2 f  - 

10 



(kacosy)+- 1 e h (kacosy) 
2 m m  (33) 

J:; (4 
P 2 ( 4  

i s  the joint acceptance squared. where j (0) = - 2 
mn 

2 
rnn Using equation (33), an asymptotic expansion for j 

as follows: Making the substitution x = (pka/nn) sin y, (33) can be written 

for large n and large ka can be obtained 

f (x) K (x) dx 
n m 

.2 
Jmn (0) = - 

X 
0 0  

(34) 

where x = pka/nr ,  
0 

n 
fori) 5 x < 00, X #  1 8 1 - ( - 1 )  cosnrx  

2 2 2  
- 

2 
(x - 1 )  f (x) = n 

n I 
and 

We note that the function fn(x) i s  continuous for 0 < x < + OD, f (1) = 1 for a l l  n, and for a l l  

x # 1 fn(x)-c Owith increasing n. We expect, therefore, that for large n and for x > 1 

only those values of x near x = 1 w i l l  contribute significantly to the integral of  equation (34). 
Accordingly we write, for x > 1 , and 0 < e < 1 , 

n - 
0 

0 

X 

f (x) K (x) dx + 1 f n (x)K,(x) dx = n m 

0 

0 

fn(x) K (x) dx - 
rn 

/'+'f (x)K (x) dx + 
m l + €  n 1 -e 

(35) 

Making use of  some trigometric identities, we can write 

1 1  



2 1 T  
16 l I + e  sin n-(x-1) 2 

K od dx, 2 m  
J'" fn(x) k (x) dx = 22 

m 
1 -e n T 1-e  2 

(x - 1) 

which becomes, after a change o f  variable, 

f (x)K (x) dx = - K ( l + u )  du. (36) m 2 2  2 m  1 -e 

Since K (1 + u) i s  analytic for I u I s  E < 1 ,  we can write 
m 

2 K ( l + u ) = a  + a  u + a  u +......, 
m 0 1  2 

where a = K (1) etc., while for l u l  5 E 
o m  

Substituting (37) and (38) into (36) gives 

2 1 T  

2 d u +  f (x)K (x) dx = - 
m 2 2  

U 

2 2 n  
u g(u)sin n T u  du, 

2 1 T  
2 sin n- udu + - 2 2  

- 
n TI -e 

4 3  
2 2 $ao - a1 - 9) 

n n  -E 

(3 7) 

(39) 

where g(u) i s  regular in the interval [ - E , +  E ]  . Making another change of variable, the first 
term on the right 'nand side of (39) can be written 

n z  2 1 T  
2 

2 du 1- du' = 
0 U 

nn 

+e sin n - u  

U 
2 2  

12 



4a 0 0 2  

2 
U '  

n r  
, sin u' 

n m  
2 

(40) I 

Now the second term i n  the brackets on the right hand side of (40) i s  of  order - 1 

second and third terms on the right hand side of (33) are of order - e  e 

while the 

therefore we can write 
ne 

2' 
finally n 

Turning now to the remaining two terms on the right hand side of  (35), and noting that K (x) 
i s  bounded for x 2 0, we can write j m 

f-' fn(x)K m (x) 
0 

In a similar manner, i t  can be shown that 

Jxo fn(x)K (x) dx = 
I+€ m 

Substituting (41), (42), and (43) into (35), and taking E to be fixed, we obtain finally 

2a 

m n 
f (x)K (x) d x = z  + 

0 

so that, from (34), 

13 
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2 (w) = 9 2 [: Km( l )  +&(+I 
X 
0 n 

j m n  

Now for x >> 1, 
0 

K m (1)= e m m  h ( a d 5 ) + 2 J i  (ka4')E 

E h (ka) + 2 J 2 (ka), 
m m m  

while for large ka i t  can be shown, by substituting the asymptotic expansions 

7 1 1 1  
cos (ka - m -  --) m 2 4  

n n  N m (ka) g d x  nka sin (ka - m 7 - z) 
into the formula for h (ka), that 

m 

z z n n  h (ka) - sin (ka - m- - - ) .  
m nka 2 4  

(44) 

(45) 

Substituting (43, (46), and the asymptotic expansion for J (ka) into (44) we obtain finally 

the following asymptotic expressions for j 2  (w), valid for large n, large ka, and pka/nn >> 1: 
m 

. mn 

2 2 j 2 ( w ) g  (2) [l + cos (ka -:)I , 
On 

(4 7) 

Using equation (33), numerical calculations of  the joint acceptance were made for the first few 
modes of  the cylinder, assuming p = 2, and the results plotted i n  Figures (2) and (3). Ai-, 
plotted were the asymptotic expressions Ao(ka) and A, (ka) , where 

1 + cos 2 (ka - :)] 
0 

14 



Referring to the figures, i t  can be seen that, although they were derived assuming that n i s  
large, the asymptotic expressions Ao(ka) and A1 (ka) give a good approximation to i2 (w) 

even for n = 1 and ka > 2. 
mn 

- 
It also might be pointed out that the asymptotic behavior of a cylinder in a diffuse f ield 
differs from that of a flat plate i n  that only the cylinder radius, and not the length, appears 
i n  the asymptotic expression, while for a f la t  plate one would expect both the length and 
width of the plate to appear i n  the asymptotic expression i n  a more or less symmetric manner. 
This indicates that one should exercise a certain amount of caution when analyzing a cylinder 
by, i n  effect, unrolling i t  into a flat plate. 
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Figure 2 .  Joint Acceptance for Cylinder in Diffuse Field (m = 0, p = 2) 
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Figure 3 .  Joint Acceptance for Cylinder in Diffuse Field (rn = 1 ,  p = 2 ) .  
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